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Recent advances in multidimensional nuclear magnetic
resonance methodology to obtain 1H, 15N and 13C resonance
assignments, interproton distance and torsion angle restraints,
and restraints that characterize long-range order, coupled with
new methods of structure refinement and novel methods for
reducing linewidths, have permitted three-dimensional solution
structures of single chain proteins in excess of 250 residues
and multimeric proteins in excess of 40 kDa to be solved.
These developments may permit the determination by nuclear
magnetic resonance of macromolecular structures up to
molecular weights in the 50–60 kDa range, thereby bringing
into reach numerous systems of considerable biological
interest, including a large variety of protein–protein and
protein–nucleic acid complexes.
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Abbreviations
2D two-dimensional
3D three-dimensional
4D four-dimensional
NOE nuclear Overhauser enhancement
SIV simian immunodeficiency virus
T1 longitudinal relaxation time
T2 transverse relaxation time
TROSY transverse relaxation-optimized spectroscopy

Introduction
The size of macromolecular structures that can be solved
by nuclear magnetic resonance (NMR) has been dramati-
cally increased over the past few years [1]. The
development of a wide range of two-dimensional (2D)
NMR experiments (using 1H active nuclei) in the early
1980s culminated in the determination of the structures of
a number of small proteins [2,3]. Under exceptional cir-
cumstances, 2D NMR techniques can be applied
successfully to the structure determination of proteins up
to ~100 residues [4,5]. Beyond 100 residues (~10 kDa),
however, 2D NMR methods tend to fail, principally due to
spectral complexity that cannot be resolved in two dimen-
sions. In the late 1980s and early 1990s, a series of major
advances took place with the introduction of experiments
that significantly extended the spectral resolution by
extending the dimensionality from two to three and four
dimensions by using 13C and 15N active nuclei (see [1] for
a review). In addition, the combination of such multidi-
mensional experiments with heteronuclear NMR
alleviated problems associated with large linewidths

because heteronuclear couplings are large relative to the
linewidths. (Note that the linewidths increase with
increasing molecular weight because of slower tumbling of
the molecule in solution; as a consequence, the efficiency
of magnetization transfer through bonds employed in
NMR experiments decreases.) Concomitant with the spec-
troscopic advances, improvements have been made with
respect to the accuracy with which macromolecular struc-
tures can be determined. Thus it is now possible to
determine the structures of proteins in the 15–35 kDa
range at a resolution comparable to ~2.5 Å resolution crys-
tal structures. The upper limit of applicability now is
probably around 60–70 kDa, the largest single-chain pro-
teins solved to date are ~30 kDa, comprising in excess of
240 residues [6••–8••], and the largest protein solved to
date, the trimeric ectodomain of simian immunodeficiency
virus (SIV) gp41, is ~44 kDa (Figure 1) [9••]. In addition,
the structure of the  elongation initiation factor 4E (a trans-
lation factor) solubilized by the detergent CHAPS, with an
overall apparent molecular weight (protein plus CHAPS
micelle) of ~40 kDa, has been determined [10••]. In this
review we will summarize recent developments that have
advanced the frontiers of applicability of NMR as a
method of 3D structure determination of macromolecules
in solution.

General strategy
The power of NMR over other spectroscopic techniques
results from the fact that every NMR active nucleus gives
rise to an individual resonance in the spectrum that can be
resolved by higher dimensional (i.e. 2D, 3D or 4D) tech-
niques. Bearing this in mind, the principles of structure
determination by NMR can be summarized as follows:
sequential resonance assignment using a combination of
through-bond and through-space correlations; torsion
angle determination and stereospecific assignments at
chiral centers using three-bond scalar couplings com-
bined, where appropriate, with intra-residue and
sequential inter-residue nuclear Overhauser enhancement
(NOE) data; identification of through-space connectivi-
ties between protons separated by less than 5 Å; and
calculation of 3D structures on the basis of the experi-
mental NMR restraints using one or more of a number of
algorithms, such as distance geometry and/or simulated
annealing [11••]. 

Sequential assignment
Conventional sequential resonance assignment, which has
been applied to proteins up to about 100 residues, albeit with
considerable effort, relies on 2D homonuclear 1H–1H
through-bond correlation experiments to identify amino acid
spin systems coupled with 2D 1H–1H NOE experiments to
identify through-space (5 Å) sequential connectivities along
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the backbone of the type CαH(i)–NH(i+1,2,3,4),
NH(i)–NH(i±2) and CαH(i)–CβH(i+3) [2,3]. (Cα represents
mainchain carbons and Cβ represents sidechain carbons;
i represents the reference amino acid residue, with i+1 indi-
cating the next residue in the chain.) 

As stated earlier, for larger proteins, the spectral com-
plexity is such that 2D experiments no longer suffice, and
it is essential to increase the spectral resolution by
increasing the dimensionality of the spectra [1]. In some
cases it is still possible to apply the same sequential
assignment strategy by making use of 3D heteronuclear
(15N or 13C)- separated experiments to increase the spec-
tral resolution [1,12]. Frequently, however, numerous
ambiguities still remain and it is advisable to adopt a
sequential assignment strategy based solely on through-
bond correlations involving well-defined heteronuclear
one-bond (1JNCα, 1JNCO, 1JCαCO, 1JCC) and two-bond
(2JNCα) scalar couplings along the polypeptide chain
[1,13,14]. With the advent of pulsed-field gradients
[15,16] it is now possible to acquire as few as two to four
scans per increment without any loss in sensitivity (other
than that due to the reduction in measurement time)
such that each 3D experiment can be recorded in as little
as seven hours. In most cases, however, signal-to-noise

requirements necessitate one to three days measuring
time, depending on the experiment. 

For proteins greater than ~25 kDa, the assignment of the
backbone and sidechain carbons is facilitated by making
use of a sample in which the nonexchangeable (carbon-
attached) protons are deuterated, resulting in a significant
reduction in linewidths [6••,17–19,20••]. Narrower lines
are the result of a substantial increase in the relaxation
times of carbon and proton spins in proximity to substi-
tuted deuterons because of the approximately sixfold
lower gyromagnetic ratio of deuterons relative to protons.
Thus, for example, in the case of the 30 kDa amino-ter-
minal domain of Enzyme I (a protein involved in
bacterial sugar transport), the average transverse relax-
ation time (T2) for the backbone amides is reduced from
~13 ms in the protonated sample to ~28 ms in the
perdeuterated sample [6••]. 

In addition to perdeutration, it is also possible to signifi-
cantly narrow the linewidths in a so-called ‘transverse
relaxation-optimized spectroscopy (TROSY) experiment’,
by suppressing transverse relaxation by the use of con-
structive intereference between dipole–dipole coupling
and chemical shift anisotropy [21••]. The TROSY

Figure 1

Stereoviews showing best-fit superpositions
of (a) the backbone and (b) selected
sidechains of the ensemble of 40 simulated
annealing structures of the ectodomain of
SIV gp41, derived from 2160 experimental
NMR restraints per subunit, including 232
unambiguous intersubunit NOEs identified
using various combinations of 1:1 mixtures of
isotopically labeled (13C, 15N and 2H) and
unlabeled (12C, 14N and 1H) subunits.
Subunits A, B and C are displayed in blue, red
and green, respectively. The location of the
amino- and carboxyl termini of subunit B are
indicated in (a).
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sequence can be incorporated into numerous multidimen-
sional experiments and its effectiveness increases with
increasing field strength. For a 150 kDa protein at a
spectrometer frequency of 750 MHz, it is predicted that
the residual linewidths of the 15N and NH resonances in a
TROSY experiment will be ~10 Hz and ~45 Hz, respec-
tively, in a protonated sample, and ~5 Hz and 15 Hz,
respectively, in a perdeuterated sample. Thus, the TROSY
sequence, in conjunction with appropriate levels of
perdeuteration, promises to remove one of the major
impediments in extending the NMR method to larger
molecular weight proteins, namely broad linewidths aris-
ing from slow molecular tumbling.

Although perdeuteration permits the assignments of the
carbon sidechains, it is still essential to assign the sidechain
protons, since it is the through-space NOE interactions
between protons that provide the main source of geomet-
ric information used to calculate the structures. For
proteins up to 25 kDa, through-bond HCCH-correlated
and total correlated spectroscopy experiments can be
employed to transfer magnetization from protons to car-
bon, through neighbouring carbons, and back to protons.
For proteins larger than 25 kDa, however, the sensitivity of
these two experiments is markedly reduced as the 13C
linewidths approach the value of the 1JCC coupling
(~30–35 Hz). An alternative, powerful, strategy is to rely on
through-space correlations between adjacent carbon atoms
(i.e. 13C–13C NOE) [22]. In contrast to through-bond cor-
relations, the efficiency of transfer of the 13C–13C NOE
increases with both increasing molecular weight and
increasing field strength.

Torsion angles and sidechain rotamers
Torsion angle restraints can be readily derived from cou-
pling constant data because simple geometric relationships
exist between three-bond couplings and torsion angles. In
simple systems, the coupling constant can be measured
directly from the in-phase or antiphase splitting of a partic-
ular resonance in the 1D or 2D spectrum. For larger
systems where the linewidths exceed the coupling, it
becomes difficult to extract accurate couplings in this man-
ner. An alternative approach involves the use of exclusive
correlated spectroscopy (ECOSY) to generate reduced
cross-peak multiplets [23]. While this permits accurate cou-
plings to be obtained, the sensitivity of ECOSY
experiments is generally quite low. Furthermore, in multi-
dimensional experiments its utility is restricted by the fact
that the couplings have to be measured in the indirectly
detected frequency dimensions, and hence are influenced
by limited digital resolution. To circumvent these limita-
tions, a series of highly sensitive quantitative J correlation
experiments have been developed [24–28]. These experi-
ments quantitate the loss in magnetization when dephasing
caused by coupling is active rather than inactive. In some
quantitative J correlation experiments, the coupling is
obtained from the ratio of cross-peak to diagonal-peak
intensities. In others, it is obtained by the ratio of the cross-

peaks obtained in two separate experiments (with the cou-
pling active and inactive), recorded in an interleaved
manner. Particularly useful couplings are 3JHNα and 3JC′C′,
which are related to the backbone torsion angle φ, 3JCγC′,
3JCγN, 3JNHβ, 3JC′Cβ and 3JHαHβ, which are related to the χ1
sidechain torsion angle, and 3JCC and 3JCH, which are relat-
ed to the χ2 and χ3 sidechain torsion angles of leucine,
isoleucine and methionine. Similar quantitative J correla-
tion experiments can also be applied to nucleic acids [28].

For smaller proteins it is often possible to obtain
stereospecific assignments of β-methylene protons on the
basis of a qualitative interpretation of the homonuclear 3Jαβ
coupling constants and the intra-residue NOE data involv-
ing the NH, CαH and CβH protons [2,3]. A more rigorous
approach, which also permits one to obtain φ, ψ backbone
and χ1 sidechain torsion angle restraints, involves the appli-
cation of a conformational grid search of φ,ψ,χ1 space on the
basis of the homonuclear 3JHNα and 3Jαβ coupling constants
(which are related to φ and χ1, respectively), and the intra-
residue and sequential inter-residue NOEs involving the
NH, CαH and CβH protons [29,30]. This information can
be supplemented and often supplanted by the measure-
ment of heteronuclear couplings by quantitative J
correlation spectroscopy. For larger proteins, the most use-
ful couplings in this regard are the 3JCγCO and 3JNCγ
couplings, involving the aromatic, methyl and methylene
Cγ atoms, which are sufficient, when used in combination,
to derive the appropriate χ1 sidechain rotamer.

Very recently, a new method, which does not rely on cou-
pling constants, has been developed to directly measure
angles between bond vectors [31••,32••]. It is based on
cross-correlated relaxation, and to date has been use to
define the backbone torsion angle ψ, either by measuring
dipole–dipole cross-correlated relaxation of double-quan-
tum and zero-quantum coherences involving the
inter-residue dipolar fields of the 15N–H(i) and
13Cα–Hα(i-1) bond vectors [31••], or by measuring the
cross-correlated relaxation between the 13Cα–Hα dipolar
interaction and the 13C′(carbonyl) chemical shift
anisotropy [32••].

Assignment of through-space proton–proton
interactions within a protein
While the panoply of 3D heteronuclear experiments is suf-
ficient for the purposes of spectral assignment, yet further
increases in resolution because of spectral overlap are
required for the reliable identification of NOE through-
space interactions. This can be achieved by extending the
dimensionality still further to four dimensions [1]. In this
manner, each 1H–1H NOE interaction is specified by four
chemical shift coordinates, the two protons giving rise to
the NOE and the heavy atoms to which they are attached. 

Because the number of NOE interactions present in each
2D plane of a 4D 13C/15N, 13C/13C or 15N/15N-separated
NOE spectrum is so small, the inherent resolution in a



4D spectrum is extremely high, despite the low level of
digitization [1]. Indeed, one can expect to obtain both good
sensitivity and resolution for proteins up to 400 residues.
Thus, once complete 1H, 15N and 13C assignments are
obtained, analysis of 4D 15N/13C, 13C/13C and 15N/15N-
separated NOE spectra should permit the assignment of
numerous NOE interactions in a relatively straightforward
manner [1]. The first successful application of these meth-
ods to the structure determination of a protein greater than
15 kDa was achieved in 1991, with the determination of
the solution structure of interleukin-1β, a protein of
18 kDa and 153 residues [33]. This has now been extend-
ed to three ~30 kDa single chain proteins: the
amino-terminal domain of enzyme I of the Escherichia coli
phosphoenolpyruvate : sugar phosphotransferase system
(259 residues) [6••], the serine protease PB92 (269
residues) [7••] and the methyltransferase ermAm (245
residues) [8••], as well as to the trimeric 44 kDa
ectodomain of SIV gp41 [9••].

For proteins larger than 30 kDa, it may not always be pos-
sible to obtain complete sidechain proton assignments
either because of spectral overlap or the absence of
through-bond connectivities because of large linewidths.
In such cases, appropriate use of deuteration can be
extremely helpful. One approach is to record a 4D
15N/15N-separated NOE spectrum on a perdeuterated
protein in which only the amides are protonated [17,18].
This yields exceptional sensitivity because many spin-dif-
fusion pathways are removed, thereby permitting long
mixing times to be employed. More recently, labeling
strategies have been developed in which the amides and
methyl groups are protonated, while all other groups are
deuterated [19,20••]. This labeling profile retains the
advantage of deuteration in triple resonance assignment
experiments while ensuring the presence of a reasonable
number of protons at useful locations for the purpose of
structure determination. Indeed, model calculations have
shown that it is possible to obtain low resolution global
folds on the basis of NH–NH, NH–methyl and
methyl–methyl distances [19,20••].

Protein–ligand and protein–protein complexes
Providing one of the partners in a complex (e.g. a peptide,
an oligonucleotide, a drug, and so on) presents a relatively
simple spectrum that can be assigned by 2D methods, the
most convenient strategy for dealing with protein com-
plexes involves one in which the protein is labeled with
15N and 13C and the partner is unlabeled (i.e. at natural iso-
topic abundance). It is then possible to use a combination
of heteronuclear filtering and editing to design experi-
ments in which correlations involving only protein
resonances, only ligand resonances, or only through-space
interactions between ligand and protein are observed
(see [34] for a recent review). These experiments have
been successfully employed in a number of laboratories for
a range of systems, including protein–drug, protein–pep-
tide and protein–nucleic acid complexes.

Oligomeric proteins represent complexes between identi-
cal subunits. For multimeric proteins, additional labeling
schemes can also be used to facilitate the identification of
intermolecular NOEs. For example, 1:1 mixtures of
13C/15N/1H : 12C/14N/1H, 13C/14N/1H : 12C/15N/2H and
13C/15N/2H : 12C/14N/1H enable one to record high sensi-
tivity 2D, 3D and 4D experiments to specifically observe
NOEs from protons attached to 13C or 15N to protons
attached to 12C or 14N, from protons attached to 13C to pro-
tons attached to 15N, and from protons attached to 15N to
protons attached to 12C or 14N, respectively [34]. This has
recently been applied to the trimeric 44 kDa ectodomain
of SIV gp41 [9••].

Additional methods of structure refinement
The NOE-derived interproton distance and torsion angle
restraints that are traditionally employed in NMR struc-
ture determination can be supplemented by direct
refinement against a number of other NMR observables
in a relatively straightforward manner (see [11••] for a
recent review). These include three-bond coupling con-
stants (related to torsion angles), three-bond amide
deuterium isotope effects on 13Cα shifts (related to the
backbone ψ angle [35•]), 13C secondary chemical shifts
(related to the backbone φ and ψ angles), and 1H chemi-
cal shifts (which are influenced by short-range ring current
effects from aromatic groups, magnetic anisotropy of C=O
and C-N bonds and electric field effects arising from
charged groups). The rationale behind including these
restraints is twofold: they are easily measured and there-
fore represent a useful source of additional structural
restraints, and it is generally found that the agreement
between observed and calculated values for these various
parameters is better for high-resolution X-ray structures
than for the corresponding high-resolution NMR struc-
tures refined in the absence of these restraints. Inclusion
of these restraints has little impact on precision but does
increase the accuracy of the structures.

Further improvements in the quality of structures generat-
ed from NMR data can be obtained by using a
conformational database potential derived from dihedral
angle relationships in databases of high-resolution highly
refined protein and nucleic acid crystal structures [36,37].
The rationale for this procedure is based on the observation
that uncertainties in the description of the nonbonded con-
tacts present a key limiting factor in the attainable accuracy
of protein NMR structures and that the nonbonded inter-
action terms presently used have poor discriminatory power
between high and low probability local conformations. The
idea behind the conformational database potential is to bias
sampling during simulated annealing refinement to confor-
mations that are likely to be energetically possible by
effectively limiting the choices of dihedral angles to those
that are known to be physically realizable. In this manner,
the variability in the structures is primarily a function of the
experimental restraints, rather than an artifact of a poor
nonbonded interaction model. This can be readily achieved
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without compromising the agreement with the experimen-
tal restraints and the deviations from idealized covalent
geometry that remain within experimental error. 

Long-range structural restraints
Until very recently, structure determination by NMR has
relied exclusively on restraints whose information is entire-
ly local and restricted to atoms close in space, specifically
NOE-derived short (<5 Å) interproton distance restraints,
supplemented by coupling constants, 13C secondary shifts
and 1H shifts. The success of the NMR method is because
of the fact that short interproton distances between units far
apart in a linear array are conformationally highly restrictive
[1]; however, there are numerous cases where restraints that
define long-range order would be highly desirable. In par-
ticular, they would permit the relative positioning of
structural elements that do not have many short interproton
distance contacts between them. Examples of such situa-
tions include modular and multidomain proteins and linear
nucleic acids. Two novel approaches have recently been
introduced that directly provide restraints that characterize
long-range order a priori [38••,39••]. The first relies on the
dependence of heteronuclear (15N or 13C) longitudinal (T1)
relaxation times and T2 (specifically T1:T2 ratios) on rota-
tional diffusion anisotropy [38••], and the second relies on
residual dipolar couplings in oriented macromolecules
[39••,40•]. The two methods provide restraints that are
related in a simple geometric manner to the orientation of
internuclear vectors relative to an external axis system (rep-
resented, for example, by the diffusion, magnetic
susceptibility or molecular alignment tensors). 

For the heteronuclear 15N T1/T2 method to be applicable
the molecule must tumble anisotropically (i.e. it must be
nonspherical). The minimum ratio of the diffusion
anisotropy for which heteronuclear T1/T2 refinement will
be useful depends entirely on the accuracy and uncertain-
ties in the measured T1:T2 ratios. In practice, the difference
between the maximum and minimum observed T1:T2 ratios
must exceed the uncertainty in the measured T1:T2 ratios
by an order of magnitude. This typically means that the dif-
fusion anisotropy should be greater than ~1.5 [38••].

Likewise, the applicability of the residual dipolar coupling
method depends on the magnitude of the the degree of
alignment of the molecule in the magnetic field. In prac-
tice, the residual dipolar couplings must exceed the
uncertainty in their measured values by an order of magni-
tude. For molecules in isotropic solution this typically
means that the magnetic susceptibility anisotropy should
be ~ 20 × 10–34 m3/molecule, which is about 20-fold greater
than the magnetic susceptibility anisotrophy for benzene
[39••]. Magnetic susceptibility anisotropies of this magni-
tude are only obtained for a limited number of systems
(e.g. paramagnetic proteins, nucleic acids and proteins
complexed to nucleic acids). Recently it has been shown
that moderate degrees of alignment, while retaining the
spectral resolution, sensitivity and simplicity obtained in

isotropic aqueous medium, can be obtained by dissolving
macromolecules in a dilute liquid crystalline phase
[41••,42••] of so-called ‘bicelles’ [43], or rod-shaped virus
particles such as the filamentous phage fd or tobacco
mosaic virus (GM Clove, MA Starich, AM Gronenborn,
unpublished data; see Note added in proof). By these
means, accurate measurement of residual dipolar couplings
for a variety of different fixed distance internuclear vector
types, including one-bond 15N–1HN, 13C–1H, 13Cα–13C′
and 15N–13C′ dipolar couplings, as well as two-bond
1HN–13C′, can be readily obtained. 

Refinement against 15N–1H and 13Cα–H dipolar couplings
induced by the magnetic field has been successfuly applied
to a number of protein–DNA complexes [39••,44••,45].
Refinement against a much more extensive set of dipolar
couplings measured using a dilute liquid crystal phase of
bicelles has recently been carried out for the protein
cyanovirin-N, a potent HIV-inactivating protein [46••] and
the human barrier-to-autointergration factor BAF (M Cai
et al., unpublished data; see Note added in proof). 

A key aspect of the use of either 15N T1:T2 ratios or dipo-
lar couplings for structure refinement is the determination
of the magnitude of the anisotropy and rhombicity in the
absence of any structural information. These quantities
can be obtained by examining the distribution of the mea-
sured 15N T1:T2 ratios [47••] or dipolar couplings [48•] that
have a powder pattern-like appearance in the case of
15N T1:T2 ratios and an exact powder pattern appearance
in the case of dipolar coupling measurements.

Conclusions and future perspectives
The recent development of a whole range of highly sensitive
multidimensional heteronuclear edited and filtered NMR
experiments has propelled the field of protein structure
determination by NMR into larger molecular weight ranges.
Proteins and protein complexes in the 20–50 kDa range are
now amenable to detailed structural analysis in solution. In
addition, although not touched upon in this review, NMR
offers a unique means of probing molecular motions on the
picosecond to nanosecond and on the microsecond to mil-
lisecond time scales (see [49••] for a recent review).

Despite these advances, it should always be borne in mind
that there are a number of key requirements that have to be
satisfied to permit a successful structure determination of
larger proteins and protein complexes by NMR. The pro-
tein in hand must be soluble and should not aggregate up to
concentrations of about 0.5–1 mM; it must be stable at room
temperature (or slightly higher) for considerable periods of
time (particularly as it may take several months of measure-
ment time to acquire all the necessary NMR data); it should
not exhibit significant conformational heterogeneity that
could result in extensive line broadening; and finally it must
be amenable to uniform 15N and 13C labeling. At the pre-
sent time there are still only relatively few examples in the
literature of proteins in the 15–30 kDa range that have been

568 Analytical techniques



NMR structure determination Clore and Gronenborn    569

solved by NMR. Likewise, only a handful of protein–DNA
and protein–peptide complexes and oligomers have been
determined to date using these methods. One can antici-
pate, however, that over the next few years, by the
widespread use of multidimensional heteronuclear NMR
experiments, coupled with semiautomated assignment pro-
cedures, many more NMR structures of proteins and
protein complexes will become available.

Note added in proof
The papers referred to in the text as (GM Clore,
MA Starich, AM Gronenborn, unpublished data) and
(M Cai et al., unpublished data) have now been accepted
for publication [50••,51••]. 
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